The Performance Mining Method: Extracting Performance Knowledge from Software Operation Data
نویسندگان
چکیده
Software Performance is a critical aspect for all software products. In terms of Software Operation Knowledge, it concerns knowledge about the software product’s performance when it is used by the end-users. In this paper the authors suggest data mining techniques that can be used to analyze software operation data in order to extract knowledge about the performance of a software product when it operates in the field. Focusing on Software-as-a-Service applications, the authors present the Performance Mining Method to guide the process of performance monitoring (in terms of device demands and responsiveness) and analysis (finding the causes of the identified performance anomalies). The method has been evaluated through a prototype which was implemented for an online financial management application in the Netherlands. The Performance Mining Method: Extracting Performance Knowledge from Software Operation Data
منابع مشابه
A Novel Method for Selecting the Supplier Based on Association Rule Mining
One of important problems in supply chains management is supplier selection. In a company, there are massive data from various departments so that extracting knowledge from the company’s data is too complicated. Many researchers have solved this problem by some methods like fuzzy set theory, goal programming, multi objective programming, the liner programming, mixed integer programming, analyti...
متن کاملSQL based frequent pattern mining
Data mining on large relational databases has gained popularity and its significance is well recognized. However, the performance of SQL based data mining is known to fall behind specialized implementation since the prohibitive nature of the cost associated with extracting knowledge, as well as the lack of suitable declarative query language support. Frequent pattern mining is a foundation of s...
متن کاملExtracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering
Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...
متن کاملData Mining Applications: A comparative Study for Predicting Student's performance
Knowledge Discovery and Data Mining (KDD) is a multidisciplinary area focusing upon methodologies for extracting useful knowledge from data and there are several useful KDD tools to extracting the knowledge. This knowledge can be used to increase the quality of education. But educational institution does not use any knowledge discovery process approach on these data. Data mining can be used for...
متن کاملExtracting Predictor Variables to Construct Breast Cancer Survivability Model with Class Imbalance Problem
Application of data mining methods as a decision support system has a great benefit to predict survival of new patients. It also has a great potential for health researchers to investigate the relationship between risk factors and cancer survival. But due to the imbalanced nature of datasets associated with breast cancer survival, the accuracy of survival prognosis models is a challenging issue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJBIR
دوره 6 شماره
صفحات -
تاریخ انتشار 2015